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the admittance matrix of Fig. 11 (b) is (yi,” +y;jO)/2. The

connection of one-to-one ideal transformers in the

equivalent circuit of Fig. 10 (and Fig. 3) is necessary

since the flow- of loop currents between the partial net-

works Zzi 0’ ory;j”e in Fig. 11 must be prevented,

To conclude our proof, the off-diagonal submatrices

(z,,” – 2,;0)/2 or (y;j’ – yliO)/2 still remain to be identi-

fied. The diagonal elements of (z,je – 2;,0)/2 are, by defi-

nition, the transfer impedance between port i and i+ N,

or j and j+N, in Fig. 10(b). Here we notice that the

difference between the corresponding diagonal elements

of (z,j’ — zt~o) /2 and of (z,;’+ z~jO)/2 is merely the sign

between the partial networks Z,je and Z,,”. This is shown

clearly in Fig. 10 where i and i+ N are the network

ports of a two-port lattice network when j and j+ N are

open-circuited and vice versa. Similarly, Fig. (12a) may

be employed to show that the off-diagonal elements of

(z,j” – z,jO)/2 in the equivalent circuit of Fig. lO(a)are

the transfer impedances between the corresponding net-

work ports of Fig. 10(b). Analogous considerations ap-

“)/2 as the transferply to the identification of (y~j~ — y,j.

admittances between the network ports of Fig. 10(a)

[see Fig. Ii(b) ].

Since the mode indices i and j are chosen arbitrarily
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in the precedirlg discussion, the proof c~f generality for

the 2N-port lattice network is complete. Thus, we may

conclude that the network given in Fig,

representing any lossless, symmetrical,

ture characterized as in (2) or (4).
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Perturbation Theorems for Waveguide Junctions,

with Applications

D. M. KERNS AND W. T, GRANDY, JR,

.4bstracf-Perturbation theorems are derived in the context of a

theory of waveguide junctions. These theorems express changes in

impedance or admittance matriz elements, due to changes in a wave-

guide junction, in terms of integrals over prodkcts of perturbed and

unperturbed basis fields associated with the junction and with its

adjofnt. Media involved are required only to be linear.

Concepts of first-order perturbation theory are discussed briefly,

and the term “correct to the lowest order” is precisely defined. The

need of explicit theorems telling when one may expect results

actually correct to the lowest order is noted.

Two problems are solved approximately by the perturbation

approach:

I) reflection at the junction of rectangular waveguide with

filleted waveguide of the same main dimensions; and
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Z) the effect of finite conductivity of both obstacle and wave-
guide wall for half-round inductive obstacles in rectangular wave-

guide.

1. INTRODUCTION

T

HE PURPOSE of this paper is to present certain

perturbation theorems in the context of a theory

of waveguide junctions, to discuss briefly some of

the rationale and the peculiarities of the simplest ap-

plications of perturbation methods, and to solve sev-

eral problems that are illustrative as well as useful.

The presentation of the theorems in Section 11 I of

this paper was inspired largely by a paper by l\’lon-

teath,l which gives theorems of the same type, but in a

1 G. D. Monteath, “Application of the compensation theorem to
certain propagation and radiation problems, ” Proc. IEE (Lomton),
pt.IV, vol. 98, pp. 23–30, 1951.
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different context. The similarity in form is perhaps

greater than that in content. Other related theorems

have also appeared in the literature.2,3 The theorems

given here are sufficiently general to enable one, in

principle, to consider arbitrary linear media.

The discussion, which relates mainly to the concept

of approximations “correct to the lowest order” and to

the use of unperturbed fields as approximations for

perturbed ones, serves as a link between the general

theorems and the applications made here.

The two problems considered are: 1) the junction of

rectangular waveguide with filleted waveguide of the

same main dimensions. This problem partly simulates

the junction of precision and commercial waveguide,

and the results are of interest in the development of

precise reflection coefficient (or impedance) measure-

ment techniques;4 2) the effect of finite conductivity

of both obstacle and waveguide wall for half-round

inductive obstacles in rectangular waveguide. The

solution of this problem is intended to enhance the use-

fulness of the half-round obstacles as calculable stan-

dards of waveguide reflection coefficient (or imped-

ance).

II. ELEC’rROMAGNETIC FORMULATION

The required formulation of the elements of a theory

of waveguide junctions has been given elsewhere.6 We

restate briefly the results needed for this paper, with

certain simplifications and adaptations.

For our purposes, a waveguide junction is a linear

electromagnetic system possessing ideal waveguide

leads and is subject to excitation only through non-

attenuated modes in these leads, The domain of the

electromagnetic field is the (finite) region V with com-

plete boundary .S and inward normal n on .S. The sur-

face S consists of a part .S’., on which (in the unper-

turbed junction) tangential electric or magnetic fields

vanish, and the parts S1, S2, . . . , S., where S~ is the

terminal surface in the nzth of the n waveguide leads

(Fig. 1). Within V, the complex vectors E, H of the

time-harmonic electromagnetic field satisfy Maxwell’s

equations, which are written

E = 8(H), H = x(E)

using the operators

& = (jCIJe)-1 .Vx x == – (j@#)–l .V* (1)

as abbreviations. Here j is the imaginary unit, u/(27r)

2 V. H. Rumsey, “The reaction concept in electromagnetic
theory, ” Phys. RerJ., vol. 94, pp. 1483–1491, 1954. See also “Errata,”
Phys. Rev., vol. 95, p, 1705, 1954.

3 A. G. Red field, ‘(An electrodynamics perturbation theorem, with

applications to non-reciprocal systems, ” Y. A ppl. Phys., VOI.2.5,pp.
1021–1024, 1954.

A Experimental measurements pertaining to this problem were
described by W. J. Anson and R. W. Beatty at the 1962 PGMTT
Nat’l. Synzfi., Boulder. Colo.

5 D. “M: Kerns, “Analysis of symmetrical waveguide jllnction.. ”
J. Res. NBS, vol. 46, pp. 267–282, Apr. 1951.

. ..... ... ... .

Fig. 1. Schematic illustration of regions V, V’, and surfaces
so, s,, . . ., s..

is the frequency, and ~, ~ are, in general, complex non-

symmetric dyadic point-functions, which reduce to real

scalar constants in the ideal portions of the waveguides.

The tangential components E,, H,, of E, H on S~ are

expressible in the form

.n

JL = E v~fie~$o, Hi = ~ i~ph~tio, (2)
p= 1 ~=1

Here v~ is the number of propagated modes in the mth

waveguide, v~P and i~fi are scalar coefficients, and the

terminal basis-fields e~YO and h~po are real and subject

to the power normalization

J
e.pOhmAOnm dS = 8PX, (3)

sm

where &~k is a Kronecker delta and n~ denotes n on

S~; here and subsequently, integrands in surface inte-

grals are scalar triple products. Impedance normaliza-

tion is given by the relation

where q~fi is the wave-admittance of mode p in wave-

guide m, and 1~~ O is the arbitrary characteristic im-

pedance of this mode. These normalizations determine

the terminal basis-fields up to the choice of a sign.

On .S’,, the homogeneous boundary condition n x E= O

applies. The additional prescription VZA= ~ ZJAP for given

m and M determines [through (2)] an electromagnetic

field in V, which is denoted e~P, K(efi,). similarly, the

prescription iLA = ~zJIP determines an electromagnetic

field denoted &(h~J, h~fl. The fields e~fi and h~p are

appropriately called electric and magnetic junction

basis-fields, respectively. If we now define the imped-

ance matrix Z and the admittance matrix Y of the

junction by writing

v,, = x Za,?n.i.,, in = x Ytk>7n#vm#, (5)
WJ w



3966 KERNS AND IGRANDY: WAVEGUIDE JUNCTION PERTURBATION THEOREMS 87

then we have for the matrix elements the basic expres-

sions

.zzA,m# =
J

&(~nw)A~~nz dS,
s~

Y2x,mp=
s

eJK (eJn 1dS. (6)
SI

These may be verified with the aid of (I)–(3), (5), and

the definitions of the junction basis-fields.

In addition to the unperturbed system having the

parameters p, c and the boundary condition n X E= O

holding on SO, w-e consider also a changed or perturbed

system in which the parameters ~’, ~’ or the boundary

condition on So (or both) may differ from the corre-

sponding properties of the first system. For simplicity,

we admit nothing more complicated than a scalar im-

pedance bound ary condition on SO in the perturbed

junction, and we shall not consider perturbations that

would change the terminal basis-fields.

We must consider also the systems “adjoint” to the

original system and to the perturbed system, respec-

tively. By the “adjoint” to a given system is here

meant one having parameters p, ? equal, respec.

tively, to the transposes of the p, E of the given system

and having exactly the same boundary conditions as

the given system. (This slightly restricted definition is

adequate for the present situation.)

The region V and the terminal basis-fields are the

same for all four systems involved. Quantities asso-

ciated with a perturbed system or with an ad joint

system are distinguished throughout by primes or cir-

cumflexes, respectively.

It seems that, in general, there is no simple relation

between the field in a given junction and the field in its

ad joint. Knowledge of such relations would, of course,

be important in applications. Special cases where such

relations do exist are shown below. The statements may

be verified with the aid of Nfaxwell’s ecluations, with due

regard for boundary conditions permitted or prescribed.

If p, c are symmetric (reciprocity condition), one finds

;q = eq, ~(~,) = X3(eq); &(Ag) = g(l~q), fig = h,; (7)

and the term ~’self-adjoint” is appropriate. If ~, c are

Hermitian and S-IX E = O on So (absen(;e of dissipation),

then

-.
~g = Ea, 3C(&~) = — 3C(eq);

—— .
~(~g) = – &(fiQ), ha = ha; (8)

the superposed bar denotes the complex conjugate. If

W, e are symmetric and Hermitian ( = real symmetric),

then both (7) and (8) hold. The junction basis-fields

are then restricted to be pure real, and the associated

fields pure imaginary.

We now observe that the immittance expressions (6)

may be rewritten as follows:

Z?h,?np=
J

&(hm,)$IIA’nris’,
2

where X= SI+S2+ . . . +Sn. The extension of the

integrals to go over all the terminal surfaces is purely

formal at this stage, since the tangential components of

the basis-fields involved vanish on all bu~t the Jth ter-

minal surface. The use of the basis-fields fiz~’ and .3 ~k’

(instead of h~k and et,, which respectively have identical

tangential components on the terminal surfaces) in-

dicates the continuation into V to be taken in consider-

ing volume-integral expressions in Section I [1. For the

ad joint of the changed junction, the expressions ccwre-

sponding to (9) are

Here the basis-fields e~y and hmp are used advised:),.

II 1, PERNJRBATION THEOREMS

In what follows it will suffice to use single-letter in-

dices p, q, . . . , to indicate both waveguide and mc,de.G

The immittance elements of a given system ancl its

ad joint satisfy the “adjoint reciprocity” relation ;T (e.g.,

stated for the changed system,

Using the first of these equations and the first equations

in (9) and (10), one may find

z’Pu
s

– Zp, = [:’(fr;)hg – 8(hJ&’]n dS. (1’2)
2

Let V’, bounded by S’, denote the subregion of V in

which one or both of the constitutive parameters in the

changed system actually differ from those in the un-

changed system (see Fig. 1). It is easily shown that the

expression in brackets in the integrand of (12), con-

sidered as a (vector) function of position in V, has zero

divergence in the region V– V’. The desired theorems

for changes of impedance follow from this property with

the aid of the divergence theorem.

If perturbations occur in the boundary conditions on

GIt should be pointed out that the theorems that follow could be
stated as well for sets of basis-fields other than the particular ones
defined previously. “Change of basis” is discussed in 1[1.M. Kerns, G

7 Equations (11) are immediate consequences of theorems given
by M. H. Cohen, “Reciprocity theorem for anisotropic media, ”
Proc. IRE (Correspondence), vol. 43, p. 103, January 19.55. For a der-
ivation wholly in the waveguide-j unction context, see Ehztrowzag-
netic Theory and Antennas. Proceedings of a 1962 Symposium he] (d at
Copenhagen, Denmark, E. C, Jordan, Ed., New York: Pergarnon
1963, p. 253 f.
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SO but not in the parameters within V, then

7J–-mm Z,q = –
s

[I?(fIn’)% – &(I@Ip’]n dS. (13)
so

If perturbations are made in the parameters within

V but not in the boundary conditions on SO, then

z,,’ – Zpg = –
s

[:’(~~)h, – Z(hQ)AJ]n dS, (14)
s’

where n on S’ is directed into V— V’. In problems that

involve only finite perturbations of the constitutive

parameters, a volume-integral form of (14) may be

useful. Again using the divergence theorem, one obtains

z’Pq
J

– z,. = .720 [A;. (/.4’– M)h, – $’(AP’)
v,

.(/ – ,) S(h,)] W. (15)

The integrand clearly vanishes outside of the subre-

gion V’.

The expressions for changes in the admittance-

matrix elements corresponding to (13), (14), and (15)

are as follows. For perturbations of the boundary con-

tion on SO,

for perturbations of the constitutive parameters with-

in V,

Yp; – Y,q = –
s

[ea~’(~p’) – ~p’~(eq)]n dS; (17)
s!

and for finite perturbations of the parameters in V,

Y,,’ – Y,, = ‘j!.! s[&’p (e’ – 6)e, – R.’(6J)
v<

“ (p’ – M)“W(e,)] W. (18)

Expressions for changes in immittance when bound-

ary and volume perturbations are simultaneously in-

volved consist of sums of the previous appropriate ex-

pressions.

IV. DISCUSSION

The foregoing equations give exact changes in the

immittance-matrix elements, but require that certain

fields in both the changed and the unchanged junction

be known. (They are not integral equations and, there-

fore, do not in themselves provide a means of deter-

mining the needed fields.) In the type of problems to be

discussed here, the original system is ‘[simple” (i.e.,

basis-fields may be obtained practicably), and the

perturbations may be considered in some sense small.

This, of course, suggests approximating the needed

perturbed fields by unperturbed ones. This expedient

is connoted by the term “first-order perturbation

theory, ” is frequently used in both electromagnetic and

quantum-mechanical eigenvalue problems, and is

adopted here. In the present context, as well as in the

application to eigenvalue problems, one hopes to ob-

tain at least a result “correct to the lowest order. ” This

concept is important for the present discussion. Its

definition is based upon the hope that the true result,

e.g., an impedance change, is expressible in a power

seriess

z’–z==clp+ c@+.., (19)

where p is a suitable parameter representing the scale

or magnitude of the perturbation [e.g., if e is changed

homogeneously in a region, one could have p = e’ – e; if

the change is not homogeneous, one may introduce P

artificially as a multiplier as in the expression P (e’ – c). ]

To obtain the “correct lowest-order result” means to

obtain correctly the first nonvanishing term on the

right side of (19).

Because of the obvious attractiveness of obtaining

higher-order results with zero-order input and without

the necessity of constructing a Green’s function, it

would be well if one had theorems telling when one

could expect a result actually correct to the lowest

order. NTo such theorems in a form immediately ap-

plicable to the problems of the type considered here

appear to have been published (nor are such theorems

given here). That such theorems are needed is certainly

indicated by examples which show that the procedure

sometimes does and sometimes does not give correct

lowest-order results. (This is discussed in somewhat

more detail in the following. ) Furthermore, conver-

gence theorems furnishing estimates of radii of con-

vergence would also be helpful in estimating rate of

convergence and, hence, the adequacy of a given lowest-

order approximation.

Of course, one might expect even an incorrect low-est-

order result to be dimensionally correct and, thus,

qualitatively of some usefulness—as in curve fitting.

However, such a result is certainly likely to be of a

lower order of usefulness than a correct lowest-order

result!

Problems in which e or p, or both, are changed in the

subregion V’ can be regarded as forming a more or less

distinct class. Problems of this class appear relatively

tractable from the point of view of finding convergence

criteria. The underlying mathematical problem can be

put in integral equation form, and the series (19) cor-

responds to the Liouville-Neumann series solution of

the integral equation. The typical behavior of this

form of solutiong indicates that for sufficiently small

changes in e and p occurring in a sufficiently small re-

gion, (19) should converge (and hence, in particular, a

first-order perturbation approach should yield a correct

lowest-order result), but that otherwise (19) should

S Concerning the quantum-mechanical eigenvalue problem,
K. O. Friedrichs remarks in an unpublished report, “This hope will
be fulfilled only under favorable circumstances. ”

g See, e.g., Courant-Hilbert, Methods of Mathematical Physics.
Ist English cd., New York: Interscience, 1953, p. 140 ff; or F. Riesz-B.
Sz.-Nagy, Functional Analysis. New York: Ungar, 1955, p. 143 ff.
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diverge. Preliminary convergence criteria of this char-

acter have, in fact, been obtained for certain immit-

tance perturbation problems in rectangular waveguide.

The first problem considered in the next section may

be regarded as a member of a class of problems in which

a perfectly conducting boundary is indented or a per-

fectly conducting object is introduced, into the region

V of the waveguide junction. If these changes are re-

garded as a change of conductivity from O to infinity in

the subregion V’, then the use of the volume-integral

formulas (15), (18) would require the application of

limiting processes that might well be difficult in gen-

eral. Nevertheless, the surface-integral formulas (14),

(17) remain directly applicable, and it is interesting to

attempt to apply the concepts of first-order perturba-

tion theory to tlhem.
To simplify the discussion, we consicler only diagonal

elements of the immittance matrices of a self -ad joint,

nondissipative junction. This has the advantage that

the resulting formulas are closely related to certain

well-known formulas for the perturbation of the reso-

nance frequencies of electromagnetic cavities, and en-

ables us to benefit from some results and theory ob-

tained in connection with the cavity problems. In (14)

and (17), we note that the tangential components of

the perturbed electric fields vanish on the surface of

the obstacle, replace the perturbed magnetic fields by

the unperturbed ones, apply the divergence theorem,

and, thus, obtain

Y,,’ – Y,g ==j(o j fMl[Wdl’1 - 6%2}~~-(Lob)
r’

In writing these equations, we have used (7) and (8)

and we have made the algebraic signs as explicit as

possible. The analogous perturbation formula for fre-

quency shifts islo

A convenient and cogent illustration of the possible

behavior of formulas of the type of (20) and (21) is

afforded by some results obtained by 13011e,11 who con-

111J. Mtiller, “Uatersuchungen tiber electromagnetische Hohl-
r%ume,” Z. Hochfrequenztecknik u. Elektroakustikl vol. 54, pp. 151–
161, 1939. R. Midler in ch. 2 of G. Goubau, Electromagnetic J? ’ave-

guides and Cavities. New York: Pergamon, 1961, gives a more critical
discussion and improved formulas that should benefit the imrnittance
problem as well as the eigenvalue problem.

n D. M. Belle ‘fEigenvalues for a centrally loaded circular cylin-

drical cavity, ” I~E Trans. OH Mwowave Theory and Techniques, vol.
MTT-10, pp. 133-138, March 1962.

sidered the perturbation of certain eigenfrequencies of a

circularly cylindrical cavity produced by a. concentric,

symmetrically located circularly cylindrical disk. He

computed several eigenfrequencies precisely as a func-

tion of the ratio of the thickness of the disk to i-he

length of the cavity, and compared the precise res~llts

with results given by (21). The qualitative character of

the results is shown clearly in Fig. 2: the result given

by (21) is not correct to the lowest order-–its graph is

not tangent to the graph of the precise result even fclr a

vanishingly small perturbation.

I

L‘\ L- ~~uAT,o~ 2J

‘Y-- CORRECT LOWEST OF?OER

PRECISE RESULT

-t
PERTURBATION PARAMETER ~

Fig. 2. Qualitative character of results obtained by Belle.

By means of examples, for which results obtained by

other methods are available, we have found that (20a)

and (20b) yield correct lowest-order results in some

cases and not in others. Two cases in which (20) yielcl ed

correct lowest-order results were the E-plane and .H-

plane steps in rectangular waveguide. These cases are

mentioned because the first problem considered in the

following section is somewhat similar: it is a plane dis-

continuity in rectangular waveguide involving small

changes in both the broad and the narrow dimensions

of the waveguide. Although this may be indicative,

the best evidence that the result is correct to the order

given is the good agreement of the computed resu \ts

with experimental results (see Fig. 4).

In the second problem considered in the next section,

the perturbation can be approximated as a change in

surface impedance from zero to a small, finite value.

Essentially this first-order perturbation approach has

been used successfully many times in this type of prob-

lem, and there is no reason to doubt that the result is

indeed correct to the lowest order. However, in this

case, higher-order terms, as in (19), would be meaning-

less because of the approximation inherent in the o se

of the impedance boundary condition.

In both examples to be presented, it is apparent that

the actual fields differ very little from the unperturbed

fields over the major part of the integration domain in

the perturbation formulas. Since the dominant con-

tribution to the immittance changes comes from this
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region, one should perhaps expect good results. Un-

fortunately, while such an observation is certainly of

pragmatic value, it is not sufficiently quantitative.

V. APPLICATIONS

The two problems considered in this section involve

only homogeneous isotropic media, and terminal sur-

faces are located in ideal rectangular waveguide. It is

assumed that only the TE1o mode propagates in the

ideal rectangular guide, and the waveguide charac-

teristic impedance f“ is set equal to the wave impedance

tiP/P, where @ is the phase constant for the TEIO mode

at the frequency of operation. Terminal basis-fields,

satisfying (3) and (4) with the forementioned choice of

characteristic impedance, and appropriate for a ter-

minal surface located at z = — L <O, are

7- ‘TX

d d 2 Tx
~o = — sin — eg, hO=_ — sin — ez, (22)

ab a ab a

~rhere ez and eu are unit vectors of the coordinate sys-

tem Oxyz shown in Fig. 3, and a and b are, respectively,

the broad and the narrow dimensions of the waveguide.

Junction of Rectangular and Filleted Waveguide

The geometry and the geometrical parameters of this

problem are shown in Fig. 3. We consider the fillets as

regions in which the conductivity has been changed

from zero to infinity, and seek to evaluate the input

impedance Z; at the reference plane z = 0–, under the

assumption that the perturbed waveguide extends to

z = cc. Equation (14) is applicable and yields

Z:– (o=
s

S(h)h’n dS. (23)
s’

The unperturbed electromagnetic field is that of a

suitably normalized TEIO mode of the rectangular

guide, traveling in the +Z direction. In fact,

&(h) = ~“eoe–~fl’,

‘=o’o+wzc”s:e)e-’o’
(One may note that the normalization is chosen so that

the transverse component of h at the terminal surface

is equal to ho, in accordance with the definition of

magnetic junction basis-fields in Section I I.) We re-

place h’ by h in (23) and evaluate to the lowest order

in R the radius of the fillets. The contribution of the

integration over the face of the discontinuity at z = O

is found to be 0(R4) .12 The significant contributions,

which involve an integration from z = O to co, are easily

evaluated using the familiar artifice of assuming an

infinitesimal attenuation to secure convergence. The

result is

12The o(w) notation should be understood as follows: f(X)

= O(aW) implies that If(x) /xn ] remains bounded by a constant inde-
pendent of x as X-we. In this paper, X. =0.

z~={o+{o =(4 – 7r) + O(W).
@zba’

The reflection coefficient at the junction of the two

Waveguides is then

‘(Y%(%+”(R4’’24)
where X~ is the (unperturbed) guide wavelength.

The good agreement of calculated results based on the

foregoing equation with the results of careful measure-

ments made by Anson and Beatty4 is shown in Fig. 4.

0.1~ I , 1 1 1 1 I I 1 1 1 , I 1 J

1-

0.05-

~
0.02- 1

0.01:

1
0.005-

1s,,[ THEORETICAL CURVE

0.002- FOR WR -90 WAVEGUIDE

I

AT f =9,S GcA
S,, = ‘0.96618 R’

0.001~
WHERE R IS THE EFFECTIVE

RADIuS IN INCHES

0.0005-

!

0.0002-

O.OOO:,J
1.00

EFFECTIVE RADIUS ( INCHES)

Fig. 4. Comparison of calculated and measured values of reflection
coefficient for the junction of rectangular and filleted waveguides.
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Finitely Conducting Half-Round Obstacle in Finitely

Conducting Rectangdar Waveguide

The unperturbed junction is the perfectly conducting

half-round obstacle in perfectly conducting waveguide

shown in Fig. 5; the perturbation is the change of

conductivity of both obstacle and waveguide from in-

finite to finite but large values (not necessarily the

same for obstacle and for waveguide). We wish to eval-

uate the input admittance (and the reflection coeffi-

cient) of the perturbed junction at a terminal surface at

z = — L ~ O, under the assumption that the waveguide

on the right extends to z = cc. This assumption is

equivalent to the assumption of a reflectionless ter-

mination on the right and corresponds to a condition of

practical application of the obstacles.

A network representation for the unperturbed prob-

lem is shown in Fig. 6. The impedance values of the ele-

ments entering into the representation of the obstacle

are, each to the lowest order in the radius R of the

obstacle,13

These values are given

impedance {o= wp/@ and

relative to the characteristic

are referred to a terminal sur-

face at z = O. We are assuming R<<a, and in what fol-

lows, we shall consistently and without further com-

ment retain only the lowest significant powers of R. By

referring to Fig. 6 and employing the transmission-line

equations, one may obtain for the input admittance of

the structure

Here, for convenience, we have introduced the admit-

tances q“ = 1/{0 and Y,, = 1 /2,8.

Fig. 5. Half-round inductive obstacle,

I
0+-—J~——————J

L-+Y,

Fig. 6. Netwark representation of the unperturbed half-
round obstacle problem.

18 D. M. Kerns, “Half-round inductive obstacles in rectangular
waveguide, ” Y. Res. NBS, vol. 64B, pp. 113-130, 1960.

To calculate the change in Yl, w-e need (16); this

equation in this problem immediately recluces to

AYI = se’~(e)n dS,
s~

(27)

where A Y1 denotes the change in Y1. The perturbed

electric field needed in this equation is approximated in

the usual way by using the unperturbed magnetic

field in the impedance boundary conditions, which is

written

nXe’=— Zm17

(remembering that n is the inward normal on .S.). Here

Z~ = wpn~~(l +j) /2; pm is the permeability and ti~ the

skin depth in metal. The subscript tit will be repiaced

by w or h, respectively, to denote the values associated

with the waveguide or with the obstacle. Equation (~?7)

thus becomes

AYl=Z~
s

[X(e)]’ dS + Z.
s

~[x(e)]’ds. (28)
1$

The H integration goes over the hemicylindrical surface

of the half-round; the W integration goes over the en-

tire interior surface of the waveguide (z> – L), except

for parts excluded by the obstacle. (For the surfa,ce-

impedance approximation to be valid on the half

round, the inequality 5~<<R must hold. )

The unperturbed electric field for the present prob-

lem may be obtained from previously published work18

(but it is not given explicitly there). To the desired ap-

proximation,

( 7r.v TR 2

)
e = C sin — e–j~z — — sin o ~!u, (29)

a ar

where C = exp( —J”@L) ~2/ (ah), and r, O are polar ccm--

dinates such that x = r sin 8, z = r cos 0. The magnetic

field associated with (29) is

jC [( ir% iTx
K(e) = — j~sin —ez+~cos —ez

)

e– jfl z

W a a a

It is interesting, and worth noting as a check, that the

term involving R in this expression can be obtained a.s a

result of another perturbation problem: If a circuJar

cylinder (of radius R) with its axis parallel to ei, is

placed in a homogeneous static (or quasi-stationary)

magnetic field Hoe=, the resulting perturbation of the

field outside the cylinder is of the known form

P—L% ()sin e
— — HOR’V X —eu,

P+PC r
(31)

where p. is the permeability of the cylinder. If, further,

Ho is set equal to the z component of (30) evaluated at

x = O, z = O (omitting the term involving R), and ii p,
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is set equal to zero (to simulate a perfectly conducting

cylinder), then (31 ) yields precisely the third term in

(30).

Upon substituting (30) into (28) and carrying out

the somewhat tedious integrations, one arrives at a re-

sult that can be conveniently written

A YI = AqO + 2A Y~.e–2~~L, (32)

where Aq” and A Y.. have the following values

(33b)

and respectively denote the perturbations of no and Y...

The perturbation of the characteristic admittance is

identified in the complete expression given by (28)

simply as the value of A Y1 in the absence of an ob-

stacle (R= O). The characteristic admittance (or im-

pedance) of the TE1o mode in rectangular waveguide

with Iossy walls is thus obtained as a by-product in the

foregoing calculation. This result is certainly not well-

known and may be new. It is needed in the final cal-

culations.

It should be observed that for the second term on the

right in (32) to be a good approximation, it is necessary

that L<<l/a, where a is the attenuation constant for

the TE1o mode in the Iossy guide. This restriction will

be removed in the final results.

It is noteworthy that A YI can be very small and may

indeed vanish for reasonable values of the parameters

involved. Thus, for example, if a = 2b, then A~O = O for

w/uc = T/ v’j, where UC is the cutoff angular frequency.

The quantity A Yee will vanish for suitable values of the

ratio ~h6h/(~W8w); in fact A Y,e would be substantially

zero for a copper half-round in a gold waveguide. The

difference in sign between the two terms in parentheses

in (33b) may be attributed to the fact that the ob-

stacle tends to reduce the magnetic field on the wave-

guide walls in the immediate vicinity of the obstacle.

Probably the result of most immediate practical

usefulness to be derived from the foregoing is the

magnitude of the reflection coefficient corresponding to

Y1’, as observed in loss!; guide having the same prop-

erties as (or being a continuation of) the waveguide to

the right of the terminal surface, For the magnitude

of the reflection coefficient of the lossless obstacle in

lossless waveguide, we have

For the magnitude of the reflection coefficient of the

lossy obstacje observed in Iossy waveguide, we have

(no)’‘“ Y1’I,y;l = ——
(70)’+- Y1’

Here, we have inserte,d the exponential factor exp

(– 20L) in order to remove the restriction L<<l/a. Ex-

pressions for the attenuation constant in rectangular

waveguide operated above cutoff are well known and

we consider a to be known. Finally, using (33) and (34),

we obtain for the correction to the relative magnitudes

of S1 and S1’,

1%1={1+%[+--(:)’(+++)1

It is fortunate, from the practical point of view, that

this correction tends to be very small. This is especially

so because effective values of surface impedance on

both machined and electrodeposited surfaces are some-

what uncertain, The formula should serve to estimate

the correction to reflection coefficients more accurate

than those used in the clerivation. The final formula is

applicable as it stands to double half-round obstacles

as well as to the single ha if-round obstacles. (The former

consist of two opposed h emicylindrical indentations ex-

tending across the narrow sides of the guide.)


