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the admittance matrix of Fig. 11(b) is (y;°+y.°) /2. The
connection of one-to-one ideal transformers in the
equivalent circuit of Fig. 10 (and Fig. 3) is necessary
since the flow of loop currents between the partial net-
works z;;° or y;;*° in Fig. 11 must be prevented.

To conclude our proof, the ofi-diagonal submatrices
(z,6—2.,°)/2 or (y:#—vy:°)/2 still remain to be identi-
fied. The diagonal elements of (z,;¢— z;,°)/2 are, by defi-
nition, the transfer impedance between port ¢ and ¢+ N,
or j and j+N, in Fig. 10(b). Here we notice that the
difference between the corresponding diagonal elements
of (z,,°—2,%/2 and of (z,;7+z;°) /2 is merely the sign
between the partial networks z,;# and z,,°. This is shown
clearly in Fig. 10 where ¢ and ¢+ XV are the network
ports of a two-port lattice network when j and j+ N are
open-circuited and vice versa. Similarly, Fig. (12a) may
be employed to show that the off-diagonal elements of
(z.;#— 2. /2 in the equivalent circuit of Fig. 10(a)are
the transfer impedances between the corresponding net-
work ports of Fig. 10(b). Analogous considerations ap-
ply to the identification of (yi6—y.;0)/2 as the transfer
admittances between the network ports of Fig. 10(a)
[see Fig. 11(b)].

Since the mode indices ¢ and j are chosen arbitrarily
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in the preceding discussion, the proof of generality for
the 2N-port lattice network is complete. Thus, we may
conclude that the network given in Fig. 3 is capable of
representing any lossless, symmetrical, 2 NV-port struc-
ture characterized as in (2) or (4).
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Perturbation Theorems for Waveguide Junctions,

with Applications

D. M. KERNS axo W. T. GRANDY, ]JR.

Abstract—Perturbation theorems are derived in the context of a
theory of waveguide junctions. These theorems express changes in
impedance or admittance matrix elements, due to changes in a wave-
guide junction, in terms of integrals over products of perturbed and
unperturbed basis fields associated with the junction and with its
adjoint. Media involved are required only to be linear.

Concepts of first-order perturbation theory are discussed briefly,
and the term “correct to the lowest order” is precisely defined. The
need of explicit theorems telling when one may expect results
actually correct to the lowest order is noted.

Two problems are solved approximately by the perturbation
approach:

1) reflection at the junction of rectangular waveguide with
filleted waveguide of the same main dimensions; and
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2) the effect of finite conductivity of both obstacle and wave-
guide wall for half-round inductive obstacles in rectangular wave-

guide.
Tperturbation theorems in the context of a theory
of waveguide junctions, to discuss briefly some of
the rationale and the peculiarities of the simplest ap-
plications of perturbation methods, and to solve sev-
eral problems that are illustrative as well as useful.
The presentation of the theorems in Section I11 of
this paper was inspired largely by a paper by Mon-
teath,! which gives theorems of the same type, but in a

I. INTRODUCTION
HE PURPOSE of this paper is to present certain

1 G. D. Monteath, “Application of the compensation theorem to
certain propagation and radiation problems,” Proc. IEE (London),
pt. IV, vol. 98, pp. 23-30, 1951.
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different context. The similarity in form is perhaps
greater than that in content. Other related theorems
have also appeared in the literature.2? The theorems
given here are sufficiently general to enable one, in
principle, to consider arbitrary linear media.

The discussion, which relates mainly to the concept
of approximations “correct to the lowest order” and to
the use of unperturbed fields as approximations for
perturbed ones, serves as a link between the general
theorems and the applications made here.

The two problems considered are: 1) the junction of
rectangular waveguide with filleted waveguide of the
same main dimensions. This problem partly simulates
the junction of precision and commercial waveguide,
and the results are of interest in the development of
precise reflection coefficient (or impedance) measure-
ment techniques;* 2) the effect of finite conductivity
of both obstacle and waveguide wall for half-round
inductive obstacles in rectangular waveguide. The
solution of this problem is intended to enhance the use-
fulness of the half-round obstacles as calculable stan-
dards of waveguide reflection coefficient (or imped-
ance).

II. ELECTROMAGNETIC FORMULATION

The required formulation of the elements of a theory
of waveguide junctions has been given elsewhere.s We
restate briefly the results needed for this paper, with
certain simplifications and adaptations.

For our purposes, a waveguide junction is a linear
electromagnetic system possessing ideal waveguide
leads and is subject to excitation only through non-
attenuated modes in these leads. The domain of the
electromagnetic field is the (finite) region V with com-
plete boundary S and inward normal n on S. The sur-
face .S consists of a part Sy, on which (in the unper-
turbed junction) tangential electric or magnetic fields
vanish, and the parts Sy, S, - - -, S,, where S, is the
terminal surface in the mth of the # waveguide leads
(Fig. 1). Within V, the complex vectors E, H of the
time-harmonic electromagnetic field satisfy Maxwell’s
equations, which are written

E = §(H), H = 5¢(E)

using the operators

& = (Juwe) VX 3= — (op)t-vx (1)

as abbreviations. Here j is the imaginary unit, w/(2w)

V. H. Rumsey, “The reaction concept in electromagnetic
theory,” Phys. Rev., vol. 94, pp. 1483-1491, 1954. See also “Errata,”
Phys. Rev., vol. 95, p. 1705, 1954,

3 A. G. Redfield, “An electrodynamic perturbation theorem, with
applications to non-reciprocal systems,” J. Appl. Phys., vol. 25, pp.
1021-1024, 1954.

4 Experimental measurements pertaining to this problem were
described by W. J. Anson and R. W. Beatty at the 1962 PGMTT
Nat'l. Symp., Boulder, Colo.

* D. M. Kerns, “Analysis of symmetrical waveguide junctions,”
J. Res. NBS, vol. 46, pp. 267282, Apr. 1951.
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Fig. 1.

Schematic illustration of regions V, V’, and surfaces

SOySh"'y ne

is the frequency, and u, € are, in general, complex non-
symmetric dyadic point-functions, which reduce to real
scalar constants in the ideal portions of the waveguides.

The tangential components E;, H,, of E, H on S,, are
expressible in the form

E, = Z vmuem;t(); H, = Z imﬂhmﬁlo' (2)
p=1 =1

Here »,, is the number of propagated modes in the mth

waveguide, ¥, and 7., are scalar coefficients, and the

terminal basis-flelds e’ and h.,° are real and subject

to the power normalization

f em,‘ohmxﬂnm dS= uhy (3)
S
where 8, is a Kronecker delta and n, denotes n on
Sm; here and subsequently, integrands in surface inte-
grals are scalar triple products. Impedance normaliza-
tion is given by the relation

h,,0 = g‘mﬂo"lmunm X e, (4)

where 7, is the wave-admittance of mode u in wave-
guide m, and {..° is the arbitrary characteristic im-
pedance of this mode. These normalizations determine
the terminal basis-fields up to the choice of a sign.

On S, the homogeneous boundary condition nX E=0
applies. The additional prescription v =8;,8,, for given
m and p determines [through (2)] an electromagnetic
field in V, which is denoted em,, 3(em,). Similarly, the
prescription 7, =00, determines an electromagnetic
field denoted &(Amu), Amu. The fields en, and A, are
appropriately called electric and magnetic junction
basis-fields, respectively. If we now define the imped-
ance matrix Z and the admittance matrix Y of the
junction by writing

i = ZZZ)\,mu'imp, il)\ = Z Yl)\,my'”mm (5)

mu mp
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then we have for the matrix elements the basic expres-
sions

Zl)\,m#=f 8(hmy)hpn; dS,
8

Y =f eszfC(em,,)nldS. (6)
81

These may be verified with the aid of (1)-(3), (5), and

the definitions of the junction basis-fields.

In addition to the unperturbed system having the
parameters y, ¢ and the boundary condition nXE=0
holding on Sy, we consider also a changed or perturbed
system in which the parameters y’, ¢ or the boundary
condition on Sy (or both) may differ from the corre-
sponding properties of the first system. For simplicity,
we admit nothing more complicated than a scalar im-
pedance boundary condition on .Sy in the perturbed
junction, and we shall not consider perturbations that
would change the terminal basis-fields.

We must consider also the systems “adjoint” to the
original system and to the perturbed system, respec-
tively. By the “adjoint” to a given system is here
meant one having parameters f, & equal, respec-
tively, to the transposes of the y, € of the given system
and having exactly the same boundary conditions as
the given system. (This slightly restricted definition is
adequate for the present situation.)

The region V and the terminal basis-fields are the
same for all four systems involved. Quantities asso-
ciated with a perturbed system or with an adjoint
system are distinguished throughout by primes or cir-
cumflexes, respectively.

It seems that, in general, there is no simple relation
between the field in a given junction and the field in its
adjoint. Knowledge of such relations would, of course,
be important in applications. Special cases where such
relations do exist are shown below. The statements may
be verified with the aid of Maxwell’s equations, with due
regard for boundary conditions permitted or prescribed.

If p, € are symmetric (reciprocity condition), one finds
& = ey Jz(éq) = 3C(ey); é<ilq) = é(hq), flq = hy; (7)

and the term “self-adjoint” is appropriate. If u, € are
Hermitian and n X E=0 on .S, (absence of dissipation),
then

¢ = €q C"é(éq) = — 3(ey);
&(h) = — &(hy), hy = hy; (8)

D>

the superposed bar denotes the complex conjugate. If
M, € are symmetric and Hermitian (=real symmetric),
then both (7) and (8) hold. The junction basis-fields
are then restricted to be pure real, and the associated
fields pure imaginary.

We now observe that the immittance expressions (6)
may be rewritten as follows:
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Zixmp =f8(hm#)i'lz>\'n s,
2

Yl)\,m” = fén\’ﬂc(em,,)n dS, (9)
where 2=S5,+S5:+ - -+ +.S,. The extension of the
integrals to go over all the terminal surfaces is purely
formal at this stage, since the tangential components of
the basis-fields involved vanish on all but the Ith ter-
minal surface. The use of the basis-fields A’ and &,’
(instead of Ay and ep, which respectively have identical
tangential components on the terminal surfaces) in-
dicates the continuation into V to be taken in consider-
ing volume-integral expressions in Section IlI. For the
adjoint of the changed junction, the expressions corre-
sponding to (9) are

VAR =fé’(1:m')hm“n s,
3

I?'m,,,l)\ = fem”j(\?'<é n\’)n ds. (10)

Here the basis-fields en, and h., are used advisedly.

I1I. PERTURBATION THEOREMS

In what follows it will suffice to use single-letter in-
dices p, ¢, - - -, to indicate both waveguide and mode.
The immittance elements of a given system and its
adjoint satisfy the “adjoint reciprocity” relation;” e.g.,

stated for the changed system,
Zpd = qu,) Vol = 17qpl- (11)
Using the first of these equations and the first equations

in (9) and (10), one may find
Zoid — Zpg = f [é/(ﬁp,)hq - g(hq)ﬁp’]n as.  (12)
p)

Let V7, bounded by S/, denote the subregion of V in
which one or both of the constitutive parameters in the
changed system actually differ from those in the un-
changed system (see Fig. 1). It is easily shown that the
expression in brackets in the integrand of (12), con-
sidered as a (vector) function of position in V, has zero
divergence in the region V— V’. The desired theorems
for changes of impedance follow from this property with
the aid of the divergence theorem.

If perturbations occur in the boundary conditions on

¢ It should be pointed out that the theorems that follow could be
stated as well for sets of basis-fields other than the particular ones
defined previously. “Change of basis” is discussed in D. M. Kerns.®

7 Equations (11) are immediate consequences of theorems given
by M. H. Cohen, “Reciprocity theorem for anisotropic media,”
Proc. IRE (Correspondence), vol. 43, p. 103, January 1955. For a der-
ivation wholly in the waveguide-junction context, see Eleciromag-
netic Theory and Antennas. Proceedings of a 1962 Symposium held at
Copenhagen, Denmark, E. C. Jordan, Ed., New York: Pergamon
1963, p. 253 ff.
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S; but not in the parameters within V, then

Zpd — Zpg = — f [é/(ﬁp/)hq - 8(hq)ﬁpl]n as. (13)
8

¢
If perturbations are made in the parameters within
V but not in the boundary conditions on .Sy, then

Zpd — Zpg= — f [é/(ﬁpl)hq - 8(hQ)[lp,]n s, (14)

where n on .5’ is directed into V' — V’. In problems that
involve only finite perturbations of the constitutive
parameters, a volume-integral form of (14) may be
useful. Again using the divergence theorem, one obtains

qu, — Zng ijf,[ﬁp'-(ul — u)-hy — é,@lp,)
Y (¢ — o-8(h)] dV. (15)

The integrand clearly vanishes outside of the subre-
gion V.

The expressions for changes in the admittance-
matrix elements corresponding to (13), (14), and (15)
are as follows. For perturbations of the boundary con-
tion on Sy,

Vo = Vo= = [ [ed(&)) ~ 8/50(eqlnds; (16)
S

]

for perturbations of the constitutive parameters with-
inV,

Vod — Vpg= — [qu\cl(ép/) - ép'ZC(eq)]n ds; (17)

St

and for finite perturbations of the parameters in V,
Vi — Vg =jwf [é’p' (€ —¢)eg— 5/é/(ézo,)

(W — p)-3e(eg)] dV.

Expressions for changes in immittance when bound-
ary and volume perturbations are simultaneously in-
volved consist of sumns of the previous appropriate ex-
pressions.

(18)

IV. DiscussioN

The foregoing equations give exact changes in the
immittance-matrix elements, but require that certain
fields in both the changed and the unchanged junction
be known. (They are not integral equations and, there-
fore, do not in themselves provide a means of deter-
mining the needed fields.) In the type of problems to be
discussed here, the original system is “simple” (i.e.,
basis-fields may be obtained practicably), and the
perturbations may be considered in some sense small.
This, of course, suggests approximating the needed
perturbed fields by unperturbed ones. This expedient
is connoted by the term “first-order perturbation
theory,” is frequently used in both electromagnetic and
quantum-mechanical eigenvalue problems, and is
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adopted here. In the present context, as well as in the
application to eigenvalue problems, one hopes to ob-
tain at least a result “correct to the lowest order.” This
concept is important for the present discussion. Its
definition is based upon the hope that the true result,
e.g., an impedance change, is expressible in a power
series®

ZI—Z=C1p+62P2+“', (19)

where p is a suitable parameter representing the scale
or magnitude of the perturbation [e.g., if € is changed
homogeneously in a region, one could have p=¢€ —e¢; if
the change is not homogeneous, one may introduce p
artificially as a multiplier as in the expression p(e’ —e). ]
To obtain the “correct lowest-order result” means to
obtain correctly the first nonvanishing term on the
right side of (19).

Because of the obvious attractiveness of obtaining
higher-order results with zero-order input and without
the necessity of constructing a Green’s function, it
would be well if one had theorems telling when one
could expect a result actually correct to the lowest
order. No such theorems in a form immediately ap-
plicable to the problems of the type considered here
appear to have been published (nor are such theorems
given here). That such theorems are needed is certainly
indicated by examples which show that the procedure
sometimes does and sometimes does not give correct
lowest-order results. (This is discussed in somewhat
more detail in the following.) Furthermore, conver-
gence theorems furnishing estimates of radii of con-
vergence would also be helpful in estimating rate of
convergence and, hence, the adequacy of a given lowest-
order approximation.

Of course, one might expect even an incorrect lowest-
order result to be dimensionally correct and, thus,
qualitatively of some usefulness—as in curve fitting.
However, such a result is certainly likely to be of a
lower order of usefulness than a correct lowest-order
result!

Problems in which € or u, or both, are changed in the
subregion V' can be regarded as forming a more or less
distinct class. Problems of this class appear relatively
tractable from the point of view of finding convergence
criteria. The underlying mathematical problem can be
put in integral equation form, and the series (19) cor-
responds to the Liouville-Neumann series solution of
the integral equation. The typical behavior of this
form of solution? indicates that for sufficiently small
changes in € and p occurring in a sufficiently small re-
gion, (19) should converge (and hence, in particular, a
first-order perturbation approach should yield a correct
lowest-order result), but that otherwise (19) should

8 Concerning the quantum-mechanical eigenvalue problem,
K. O. Friedrichs remarks in an unpublished report, “This hope will
be fulfilled only under favorable circumstances.”

9 See, e.g., Courant-Hilbert, Methods of Mathematical Physics.
1st English ed., New York: Interscience, 1953, p. 140 ff; or F. Riesz-B.
Sz.-Nagy, Functional Analysis. New York: Ungar, 1955, p. 143 ff,
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diverge. Preliminary convergence criteria of this char-
acter have, in fact, been obtained for certain immit-
tance perturbation problems in rectangular waveguide.

The first problem considered in the next section may
be regarded as a member of a class of problems in which
a perfectly conducting boundary is indented or a per-
fectly conducting object is introduced into the region
V of the waveguide junction. If these changes are re-
garded as a change of conductivity from 0 to infinity in
the subregion V’, then the use of the volume-integral
formulas (15), (18) would require the application of
limiting processes that might well be difficult in gen-
eral. Nevertheless, the surface-integral formulas (14),
(17) remain directly applicable, and it is interesting to
attempt to apply the concepts of first-order perturba-
tion theory to them.

To simplify the discussion, we consider only diagonal
elements of the immittance matrices of a self-adjoint,
nondissipative junction. This has the advantage that
the resulting formulas are closely related to certain
well-known formulas for the perturbation of the reso-
nance frequencies of electromagnetic cavities, and en-
ables us to benefit from some results and theory ob-
tained in connection with the cavity problems. In (14)
and (17), we note that the tangential components of
the perturbed electric fields vanish on the surface of
the obstacle, replace the perturbed magnetic fields by
the unperturbed ones, apply the divergence theorem,
and, thus, obtain

qu, — Zgg = ju j;,{el [S(hQ)]gl - l‘hqg} av, (20&)

’
qu -

Vg = jw f” {M I ['?C<eq)]2

— ee2} dV. (20b)

In writing these equations, we have used (7) and (8)
and we have made the algebraic signs as explicit as
possible. The analogous perturbation formula for fre-
quency shifts is'?

P
voo= [ EE- @, O
2W Jy

where
W =qu-ﬁdV=feE7EdV.
12 14

A convenient and cogent illustration of the possible
behavior of formulas of the type of (20) and (21) is
afforded by some results obtained by Bolle,'* who con-

10 ], Miiller, “Untersuchungen uber electromagnetische Hohl-
riume,” Z. Hochfrequenstechnik u. Elekiroakustik, vol. 54, pp. 157
161, 1939. R. Miller in ch. 2 of G. Goubau, Electromagnetic 1V ave-
guides and Cavities. New York: Pergamon, 1961, gives a more critical
discussion and improved formulas that should benefit the immittance
problem as well as the eigenvalue problem.

11 D, M. Bolle, “Eigenvalues for a centrally loaded circular cylin-
drical cavity,” IRE Trans. on Microwave Theory and Technigues, vol.
MTT-10, pp. 133-138, March 1962.
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sidered the perturbation of certain eigenfrequencies of a
circularly cylindrical cavity produced by a concentric,
symmetrically located circularly cylindrical disk. He
computed several eigenfrequencies precisely as a func-
tion of the ratio of the thickness of the disk to the
length of the cavity, and compared the precise results
with results given by (21). The qualitative character of
the results is shown clearly in Fig. 2: the result given
by (21) is not correct to the lowest order—its graph is
not tangent to the graph of the precise result even for a
vanishingly small perturbation.

~
-
[&]
=
z EQUATION 21
3 N\ ¢ EST OR
g \¢~ CORRECT LOWEST ORDER
b PRECISE RESULT
[’1]
Q
z
<
=2
o
w
w
x

PERTURBATION PARAMETER —=
Fig. 2. Qualitative character of results obtained by Bolle.

By means of examples, for which results obtained by
other methods are available, we have found that (20a)
and (20b) yield correct lowest-order results in some
cases and not in others. Two cases in which (20) yielded
correct lowest-order results were the E-plane and H-
plane steps in rectangular waveguide. These cases are
mentioned because the first problem considered in the
following section is somewhat similar: it is a plane dis-
continuity in rectangular waveguide involving small
changes in both the broad and the narrow dimensions
of the waveguide. Although this may be indicative,
the best evidence that the result is correct to the order
given is the good agreement of the computed results
with experimental results (see Fig. 4).

In the second problem considered in the next section,
the perturbation can be approximated as a change in
surface impedance from zero to a small, finite value.
Essentially this first-order perturbation approach has
been used successfully many times in this type of prob-
lem, and there is no reason to doubt that the result is
indeed correct to the lowest order. However, in this
case, higher-order terms, as in (19), would be meaning-
less because of the approximation inherent in the use
of the impedance boundary condition.

In both examples to be presented, it is apparent that
the actual fields differ very little from the unperturbed
fields over the major part of the integration domain in
the perturbation formulas. Since the dominant con-
tribution to the immittance changes comes {rom this
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region, one should perhaps expect good results. Un-
fortunately, while such an observation is certainly of
pragmatic value, it is not sufficiently quantitative.

V. APPLICATIONS

The two problems considered in this section involve
only homogeneous isotropic media, and terminal sur-
faces are located in ideal rectangular waveguide. 1t is
assumed that only the TE(, mode propagates in the
ideal rectangular guide, and the waveguide charac-
teristic impedance {? is set equal to the wave impedance
wp/B, where 8 is the phase constant for the TE;, mode
at the frequency of operation. Terminal basis-fields,
satisfying (3) and (4) with the forementioned choice of
characteristic impedance, and appropriate for a ter-
minal surface located at z=—L <0, are

2 T 2 . T
el = /‘/—siney, kY= — 1/* sin —e,, (22)
ab a ab a

where e, and e, are unit vectors of the coordinate sys-
tem Oxyz shown in Fig. 3, and ¢ and b are, respectively,
the broad and the narrow dimensions of the waveguide.

Junction of Rectangular and Filleted Waveguide

The geometry and the geometrical parameters of this
problem are shown in Fig. 3. We consider the fillets as
regions in which the conductivity has been changed
from zero to infinity, and seek to evaluate the input
impedance Z; at the reference plane 2=0~, under the
assumption that the perturbed waveguide extends to
z= w. Equation (14) is applicable and yields

Z{ — 0= f &(h)h'n ds. (23)
The unperturbed electromagnetic field is that of a

suitably normalized TE;, mode of the rectangular
guide, traveling in the 4z direction. In fact,

&(h) = {Pele b2,

K 2 X ]
h=|h"+— —cos— e, | P,
Ba ab a

(One may note that the normalization is chosen so that
the transverse component of A at the terminal surface
is equal to A% in accordance with the definition of
magnetic junction basis-fields in Section II.) We re-
place A’ by h in (23) and evaluate to the lowest order
in R the radius of the fillets. The contribution of the
integration over the face of the discontinuity at z=0
is found to be O(R*).? The significant contributions,
which involve an integration from z=0 to «, are easily
evaluated using the familiar artifice of assuming an
infinitesimal attenuation to secure convergence. The
result is

2 The O(x") notation should be understood as follows: f(x)
=0(xm) implies that [f(x)/x"| remains bounded by a constant inde-
pendent of x as x—ux,. In this paper, x;=0.
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2.2

27 = 0 o Rz
¢ B2%a?

(4 — =) + O(RY).

The reflection coefficient at the junction of the two
waveguides is then

z] — ¢
Z{ 0

QY559 om
a/ ab 8 ’

where A, is the (unperturbed) guide wavelength.

The good agreement of calculated results based on the
foregoing equation with the results of careful measure-
ments made by Anson and Beatty* is shown in Fig. 4.

S =

(24)

Fig. 3. Junction of rectangular and filleted waveguides.
0l T LA S B T T T T T
005 b
L EXPERIMENTAL VALUES §
MEASURED AT 98 Gc/s
002 : ]
0.01— —
0005 b
fsul | THEORETICAL CURVE e
(Ag\2 Re (4-m)
Su '( a ) ab 8
0002 FOR WR -90 WAVEGUIDE N
AT £:9.8 Ge/s
S, =-0.96618 R*
0,00t — WHERE R IS THE EFFECTIVE _
s RADIUS IN INCHES 3
0.0005 - A
0.0002 - b
0.0001 1 "l | | I | 1 S N T B |
0.010 0020 0050 0400 0.200 0.500 100

EFFECTIVE RADIUS (INCHES)

Fig. 4, Comparison of calculated and measured values of reflection
coefficient for the junction of rectangular and filleted waveguides.
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Finitely Conducting Half-Round Obstacle in Finitely
Conducting Rectangular Waveguide

The unperturbed junction is the perfectly conducting
half-round obstacle in perfectly conducting waveguide
shown in Fig. 5; the perturbation is the change of
conductivity of both obstacle and waveguide from in-
finite to finite but large values (not necessarily the
same for obstacle and for waveguide). We wish to eval-
uate the input admittance (and the reflection coeffi-
cient) of the perturbed junction at a terminal surface at
z=—L<0, under the assumption that the waveguide
on the right extends to z= . This assumption is
equivalent to the assumption of a reflectionless ter-
mination on the right and corresponds to a condition of
practical application of the obstacles.

A network representation for the unperturbed prob-
lem is shown in Fig. 6. The impedance values of the ele-
ments entering into the representation of the obstacle
are, each to the lowest order in the radius R of the
obstacle,®

jwua [ a \? joua [ wR\*
zw=”(—> Z= 7 <—>
a

T \WR ’ 27

(25)

These values are given relative to the characteristic
impedance {®=wp/B and are referred to a terminal sur-
face at 2=0. We are assuming R<a, and in what fol-
lows, we shall consistently and without further com-
ment retain only the lowest significant powers of R. By
referring to Fig. 6 and employing the transmission-line
equations, one may obtain for the input admittance of
the structure

Vi= 1"+ 2V, e 2L, (26)

Here, for convenience, we have introduced the admit-
tances 7°=1/{" and V..=1/Z,..
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Fig. 5. Half-round inductive obstacle.
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Fig. 6. Network representation of the unperturbed half-

round obstacle problem.

3 D. M. Kerns, “Half-round inductive obstacles in rectangular
waveguide,” J. Res. NBS, vol. 64B, pp. 113-130, 1960.

KERNS AND GRANDY: WAVEGUIDE JUNCTION PERTURBATION THEOREMS 91

To calculate the change in ¥;, we need (16); this
equation in this problem immediately reduces to
AY, =f e'%(e)n ds, (27)

Sy

where AY; denotes the change in V). The perturbed
electric field needed in this equation is approximated in
the usual way by using the unperturbed magnetic
field in the impedance boundary conditions, which is
written

nXe>~=—27,h

(remembering that n is the inward normal on S,). Here
Zom=pmOn(1+75)/2; pm is the permeability and §,, the
skin depth in metal. The subscript m will be replaced
by w or k, respectively, to denote the values associated
with the waveguide or with the obstacle. Equation (27)
thus becomes

AY, = Z, fH[.c«z(e)]2 s+ z, fw[i}c(e)]2d5. (28)

The H integration goes over the hemicylindrical surface
of the half-round; the W integration goes over the en-
tire interior surface of the waveguide (z> — L), except
for parts excluded by the obstacle. (For the surface-
impedance approximation to be wvalid on the half
round, the inequality §,<<R must hold.)

The unperturbed electric field for the present prob-
lem may be obtained from previously published work!?
(but it is not given explicitly there). To the desired ap-
proximation,

TR2

T A .
e=C|sin—e¢ 2~ —ginf e, (29)

a ar
where C=exp{—jBL) VZ_/(_aIR and 7, 6 are polar coor-
dinates such that x=7 sin 8, z=7 cos . The magnetic
field associated with (29) is

iCry. . = T % N
¥(e) = —|{j8sin—e, +—cos—e, ) e >
Wi

a a a
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vV X —r“ ey) . (\50)

a

It is interesting, and worth noting as a check, that the
term involving R in this expression can be obtained as a
result of another perturbation problem: If a circular
cylinder (of radius R) with its axis parallel to e, is
placed in a homogeneous static (or quasi-stationary)
magnetic field Hge,, the resulting perturbation of the
field outside the cylinder is of the known form

M~ g sin 6
— HyR?*V X < ey),
I T r

(31)

where g, 1s the permeability of the cylinder. If, further,
H, is set equal to the z component of (30) evaluated at
x=0, 2=0 (omitting the term involving R), and it u,
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is set equal to zero (to simulate a perfectly conducting
cylinder), then (31) vields precisely the third term in
(30).

Upon substituting (30) into (28) and carrying out
the somewhat tedious integrations, one arrives at a re-
sult that can be conveniently written

AY; = Ap® + 2AY e %8L, (32)

where An® and AY.. have the following values

DAL (Y (L )]

(33b)

An®
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uR 37
and respectively denote the perturbations of #° and V...

The perturbation of the characteristic admittance is
identified in the complete expression given by (28)
simply as the value of AV, in the absence of an ob-
stacle (R=0). The characteristic admittance (or im-
pedance) of the TEi, mode in rectangular waveguide
with lossy walls is thus obtained as a by-product in the
foregoing calculation. This result is certainly not well-
known and may be new. It is needed in the final cal-
culations.

It should be observed that for the second term on the
right in (32) to be a good approximation, it is necessary
that L<«1/a, where o is the attenuation constant for
the TE: mode in the lossy guide. This restriction will
be removed in the final results.

It is noteworthy that AY; can be very small and may
indeed vanish for reasonable values of the parameters
involved. Thus, for example, if ¢ =2b, then Ay®=0 for
w/w,=m/+/3, where w, is the cutoff angular frequency.
The quantity AY,, will vanish for suitable values of the
ratio uxbs/(uub.); in fact AY,, would be substantially
zero for a copper half-round in a gold waveguide. The
difference in sign between the two terms in parentheses
in (33b) may be attributed to the fact that the ob-
stacle tends to reduce the magnetic field on the wave-
guide walls in the immediate vicinity of the obstacle.

Probably the result of most immediate practical

usefulness to be derived from the foregoing is the
magnitude of the reflection coefficient corresponding to
Y/, as observed in lossy guide having the same prop-
erties as (or being a continuation of) the waveguide to
the right of the terminal surface. For the magnitude
of the reflection coefficient of the lossless obstacle in
lossless waveguide, we have

7 — ¥
74 T,

For the magnitude of the reflection coefficient of the
lossy obstacle observed in lossy waveguide, we have
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770

[ $:] =

(34)
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Here, we have inserted the exponential factor exp
(—2alL) in order to remove the restriction L<1/a. Ex-
pressions for the attenuation constant in rectangular
waveguide operated above cutoff are well known and
we consider « to be known. Finally, using (33) and (34),
we obtain for the correction to the relative magnitudes
of S; and S/,

Sl, .uwaw 1 ™ 2 1 1

et )

S uw L2b Ba a 2b
Spydus é
ot _ Mo h} p—— (35)
3muR uR

It is fortunate, from the practical point of view, that
this correction tends to be very small. This is especially
so because effective values of surface impedance on
both machined and electrodeposited surfaces are some-
what uncertain. The formula should serve to estimate
the correction to reflection coefficients more accurate
than those used in the derivation. The final formula is
applicable as it stands to double half-round obstacles
as well as to the single half-round obstacles. (The former
consist of two opposed hemicylindrical indentations ex-
tending across the narrow sides of the guide.)




